## Thursday, December 22, 2016

### Mechanics Semester Review

Here is a list of topics for our final, the second week back from winter break:

Basics:
Vector algebra - vector addition, multiplication (dot and cross products)
Derivatives - finding them; what does it mean graphically; instantaneous values
Define v = dx/dt; a = dv/dt
Antiderivatives - finding them; what does it mean graphically
Motion graphs

Kinematics:
Constant acceleration equations, how to use them in a variety of problems
Free fall
Relative motion (e.g. boat going across a river)
Projectiles

Newton's laws:
Know them by number; conceptually what do they mean? Examples.
Equilibrium, balancing forces in multiple dimensions
Applications of Fnet = ma, all types
Tension, friction, on inclines (gravity triangle), springs
Systems problems, such as multiple blocks tied together
Circular motion, how to set up mv^2/R in problems; horizontal vs vertical problems
NON-constant forces and accelerations
Air friction, f = -kv; derivation of v(t); chain rule
Gravity - Newton's law of universal gravitation; Einstein's thoughts on warped space-time
Orbital motion - orbital speed, Kepler's laws; Binary orbits

Energy:
Conservation law
Different types, conversions of energy
Work redefined as an integral; work is the amount of energy transferred between objects
Using work and conservation to solve a variety of problems, especially with speeds and non-constant forces
Potential energies (gravity, springs)
How to do gravity the right way with energy, U = -GMm/r; what does - sign mean?
Potential wells - U-x graph vs F-x graph; positive force vs negative force
Gradient, F = - dU/dx; what this means